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1. Introduction 
 
 Stochastic unit-root processes – STUR have a root varying around unity, so 
they can be stationary for some periods and nonstationary for the others. Since 
properties of STUR processes make them quite natural in modeling of economic 
time series, an appropriate identification method of stochastic unit-roots is re-
quired. However, standard tests for a unit root can not distinguish between 
STUR processes and integrated ones. The aim of this paper is to examine if 
chaos theory provides methods of time series analysis which can be used to 
stochastic unit-roots identification.  
 This paper is organized as follows. Section 1 contains the introduction. Sto-
chastic unit-root processes are defined in section 2. Two methods from chaos 
theory – the estimation of the largest Lyapunov exponent and R/S analysis are 
described in sections 3 and 4. The results of experiments verifying the useful-
ness of these methods to STUR identification are presented in section 5.  
 
 
2. STUR Processes 
 
 Granger and Swanson (1997) defined stochastic unit-root processes as: 
  
 tttt xax ε+= −1 ,      (1) 

                                                 
1 Financial support of the Polish Committee for Scientific Research for the project  

2 H02B 015 25 (realized in 2003-2006) is gratefully acknowledged. 
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where tε  is zero mean, i.i.d. with variance , and where 2
εσ )exp( tta α=  with 

tα  a Gaussian stationary series having mean m, variance  and power spec-
trum . 

2
ασ

)(ωαg
 A particular case where tα  is an AR(1) process is considered in this paper, 
i.e.: 
 ttt ηραμα ++= −1 ,       (2) 

where 1<ρ  and  is i.i.d. independent of );0(~ 2
ηση Nt tε . 

 STUR processes are a specific subclass of time-varying processes. On the 
other hand, they can be considered as a generalization of unit-root processes, 
since Equation 1 gives the random walk process if 0≡tα . However, in a gen-
eral case roots of STUR processes vary around unity, which makes them sta-
tionary for some periods and nonstationary for the others. 
 An application of STUR processes in modeling of economic time series 
must be preceded by an identification of stochastic unit-roots. Granger and 
Swanson (1997) showed that one of the most popular methods of unit-roots 
identification – augmented Dickey-Fuller (ADF) test, can not distinguish be-
tween time series generated by STUR and random walk models. Leybourne, 
McCabe and Tremayne (1996) proposed the test, which identifies stochastic 
unit-root processes much better than ADF. However, the power of this test de-
pends on the length of investigated time series and on the variance  
(Granger, Swanson (1997)). 

2
ησ

 
 
3. R/S Analysis 
 

The rescaled range, or R/S analysis detects long-memory processes so it is 
used to identify non-random time series. The calculation of the rescaled range 
for a given time series , where ty nt ...,,2,1= , consists of the following steps 
(see Peters (1994)): 
1. the mean )(nM  and the standard deviation  of  are calculated, )(nS ty

2. the time series ∑
=

−=
k

t

n
t

n
k MyY

1

)()( ),( nk ...,,2,1= , is determined, 

3. the range  is computed, )(min)(max )()()( n
kk

n
kk

n YYR −=

4. the rescaled range nSR /
df

= )(
)(

n
n

S
R  is calculated. 

 However, it is the Hurst exponent which is the final result of R/S analysis. 
To estimate its value, an investigated time series , tx Nt ...,,2,1= , must be 
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divided into separable subsequences of the length n, where the number n  is, in 
turn, each of the dividers of the number N, satisfying the condition 2 ≤ n ≤ N/2.2 
For the fixed n, the values  are calculated for the each i-th subsequence, 

following steps 1–4. Next, the average  

)(/ i
nSR

)(/ i
nSR  over all subsequences is com-

puted and this value is set as . Applying this procedure for each value n a 
sequence ( ) is obtained. The essence of R/S analysis is that  follows 
the power law: 

nSR /

nSR / nSR /

 ,       (3) )(/ Nh
n naSR ⋅=

or equivalently: 

 ,lnln)()/(ln anNhSR n +=      (4) 

where the number h(N) is called the Hurst exponent and a is a constant. There-
fore, the Hurst exponent is estimated as a slope of the regression Equation 4. 
 The Hurst exponent equal to 0.5 indicates no long-term dependencies in the 
time series. However, it should be emphasized that 0.5 is the expected value of 
the Hurst exponent for short-memory time series of the infinite length. In the 
case of a finite number of observations, the expected value of h(N) differ from 
0.5. Therefore, in practice, the estimated Hurst exponent should be compared 
with the expected value for a short-memory time series of the same length. To 
this end, one of the approximating formula of calculating the value of  
must be applied to. One of such formulas is the Anis and Lloyd’s (1976) equa-
tion: 

)/( nSRE

 ∑
−

=

−
⋅

⎟
⎠
⎞

⎜
⎝
⎛Γ⋅

⎟
⎠
⎞

⎜
⎝
⎛ −

Γ
=

1

1

2

2
1

)/(
n

i
n i

in
n

n

SRE
π

,     (5) 

where  is the gamma function, defined as follows: )(zΓ

 )!1()( −=Γ zz ,    ( ) !)!12(
22

1 −⋅=+Γ zz z
π .   (6) 

 
 
 

                                                 
2 To improve stability of estimates bigger values of n should be considered,  

e.g.  (Peters (1994), p. 63). 10≥n
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4. The Largest Lyapunov Exponent  
 
 Lyapunov exponents measure an average rate of a divergence/convergence 
of initially close states of dynamical systems. They quantify system’s sensitivity 
to initial conditions, which is a crucial condition of chaotic systems. A presence 
of a positive exponent means that initially close trajectories of the system di-
verge exponentially. A larger positive Lyapunov exponent indicates a higher 
level of system’s sensitivity, therefore a bigger strength of chaos. 
 In this paper, in order to estimate the largest Lyapunov exponent from a 
time series, the algorithm proposed independently by Kantz (1994) and Rosen-
stein et al. (1993) was applied. The algorithm consists of the following steps 
(see Kantz, Schreiber (1997)): 
1) for each delay vector = , m

ix̂ ),...,,( )1( lagmilagii xxx −−− Nlagmi ...,,1)1( +−= , 

the set  consisting of the k nearest  (in a sense of any fixed distance) neigh-

bours  of  is determined
iO

m
i j

x̂ m
ix̂ 3,  

2) for each Nlagmi ...,,1)1( +−= , and max,...,1 nn = the average 

 ∑
∈

++ −=
i

m
ji

j
Ox

ninin xx
k

id
ˆ

1)(  (7) 

is computed, where is a priori set a natural number indicating the amount 
of iterations, while the divergence of states is analyzed, 

maxn

3) the average  over all delay vectors is computed: nd

 ∑
+−=

=
N

lagmi
nn id

)lagN-(m-
d

1)1(

)(
1

1 , (8) 

4) the largest Lyapunov exponent is estimated as a slope of the regression equa-
tion: 

 , for . (9) ( ) ( ) nλdd n += 0lnln 1≥n

 It is clearly seen, that the results of this algorithm depends on the distance 
used to determine the nearest neigbours and on the parameters m, lag, k and 

 which are set a priori (see e.g. Orzeszko (2003)). maxn
 
 
5. Experimental Results 
 
 In this section two methods from chaos theory – an estimation of the largest 
Lyapunov exponent and R/S analysis are considered. Their usefulness to identi-

                                                 
3 The parameters m and lag assume natural values and they are called, respectively, 

an embedding dimension and a time delay. 



© C
op

yr
igh

t b
y T

he
 N

ico
lau

s C
op

er
nic

us
 U

niv
er

sit
y S

cie
nt

ifi
c P

ub
lis

hin
g H

ou
se

Properties of STUR Processes in the Framework of Chaos Theory 193

fication of stochastic unit-root is examined. The STUR process considered by 
Granger and Swanson (1997) is used in the simulations. On the ground of this 
process Granger and Swanson showed that augmented Dickey-Fuller test, can-
not easily distinguish between exact and stochastic unit roots.  
 The investigated STUR process is defined by Equations 1 and 2 for 6.0=ρ , 

00003125.0−=μ .4 The two error processes εt ~ N(0; 1) and ηt ~ N(0; 0.0001) 
were simulated as independent, from the pseudorandom generator. 1000 time 
series of length 250 were generated from the considered STUR process and next 
1000 time series of the same length, for comparison, from the random walk 
(RW) model ttt xx ε+= −1 . 
 First, to apply R/S analysis, time series of the first differences 

1−−=Δ ttt xxx  were determined. Since the number 249 has only 4 dividers, to 
improve the results of the Hurst exponent estimates, the time series of the dif-
ferences were shortened to the first 240 observations (see Peters (1994)). The 
obtained frequency distributions of Hurst exponents are shown in Figure 1 and 
the calculated parameters of these distributions are summarized in Table 1. The 
Hurst exponent  for an independent process, calculated from the Anis 
and Lloyd formula equals .  

))240((hE
0.5760

 The Jarque-Bera test did not reject the null hypothesis of the normal distri-
bution of the Hurst exponent for the Δ STUR process. Therefore, to verify the 
null  against the alternative , Z-statistic 

was applied. Since 

5760.0)(:0 =hEH 5760.0)(:1 >hEH

1000
0716.0

5760.06057.0
⋅

−
=Z =13.117, the null hypothesis is 

strongly rejected. This result indicates that, on an average, Hurst exponents of 
STUR are bigger than for Δ Δ RW, which means that R/S analysis may distin-

guish time series generated from these two processes.  
 Additionally, the Kolmogorov-Smirnov test was applied to verify a consis-
tency of the distributions of Hurst exponents for Δ STUR and RW  
processes

Δ
5. The calculated Kolmogorov-Smirnov statistic  equals , 

which means that the null hypothesis is rejected for the significance levels 
KS 277.5

05.0=α  and 01.0=α  as well. This result is an additional confirmation of the 
differences between the distributions of Hurst exponents for both analyzed pro-
cesses. 
  

 
 

                                                 
4 For the fixed ρ  the value μ  is determined to satisfy the condition . 1)( =taE
5 The Kolmogorov-Smirnov statistic are usually noted as λ . The same symbol usu-

ally denotes Lyapunov exponents.  To avoid confusing these quantities, in this paper, 
the Kolmogorov-Smirnov statistic is marked as KS. 
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Fig. 1. Frequency distributions of Hurst exponents for Δ STUR and Δ RW  
processes6
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Source: Author’s calculation. 
 
  Table 1. Parameters of the frequency distributions of Hurst exponents  
 

 Δ STUR Δ RW 
Mean h  0.6057 0.5700 
Median 0.6038 0.5721 
Maximum  0.8088 0.7764 
Minimum 0.4054 0.3219 
Standard deviation 0.0716 0.0618 
Jarque-Bera   
(probability) 

3.404 
(0.182) 

15.203 
(0.001) 

   

  Source: Author’s calculation. 
 

 An estimation of the largest Lyapunov exponent was the second applied 
method. Since nonstationarity may disturb a reliability of chaos identification 
(see Kantz, Schreiber (1997)), the time series of the first differences , 

, were investigated. The aim of this research was to verify if 
STUR processes are sensitive to initial conditions and, if the estimation of the 
largest Lyapunov exponent may be a useful tool of distinguishing time series 
generated by STUR and random walk processes.  

txΔ
250...,,3,2=t

 In computations the following values of the parameters were considered: 
, ,  and 1=lag 1=k 5max =n 15,10,7,5,3,2,1=m . The obtained frequency dis-

tributions of the largest Lyapunov exponents are presented in Figure 2 and the 
calculated parameters of these distributions are summarized in Table 2. 
 

 

 

                                                 
6 Of course in the case of the random walk model, the first differences RW are 

 process. 
Δ

tε
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Fig. 2. Frequency distributions of the largest Lyapunov exponents for STUR  
and RW processes 
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 Source: Author’s calculation. 
 
 
Table 2. Parameters of the frequency distributions of the largest Lyapunov exponents 
 

 Mean λ  Median Max Min σ  Jarque-Bera    
(probability) 

m=1 
Δ STUR 0.0017 0.0010 0.0849 -0.0767 0.0264 3.116 (0.211) 
Δ RW -0.0006 -0.0014 0.0864 -0.0973 0.0258 1.436 (0.488) 

m=2 
Δ STUR 0.0024 0.0018 0.0947 -0.0891 0.0273 0.581 (0.748) 
Δ RW -0.0003 0.0009 0.0934 -0.0886 0.0265 1.108 (0.575) 

m=3 
Δ STUR 0.0028 0.0018 0.0860 -0.0690 0.0273 1.464 (0.481) 
Δ RW 0.0005 0.0007 0.0997 -0.0953 0.0278 1.273 (0.529) 

m=5 
Δ STUR 0.0021 0.0020 0.0941 -0.0823 0.0270 3.449 (0.178) 
Δ RW 0.0008 0.0005 0.0928 -0.0914 0.0264 4.165 (0.125) 
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m=7 
Δ STUR 0.0015 0.0018 0.0991 -0.0811 0.0279 0.740 (0.691) 
Δ RW -0.0013 -0.0017 0.0839 -0.1078 0.0274 3.067 (0.216) 

m=10 
Δ STUR 0.0015 0.0019 0.0766 -0.0816 0.0264 0.369 (0.832) 
Δ RW -0.0001 -0.0011 0.0826 -0.0900 0.0258 2.077 (0.354) 

m=15 
Δ STUR 0.0023 0.0025 0.0924 -0.0746 0.0254 0.707 (0.702) 
Δ RW -0.0007 -0.0007 0.0768 -0.0969 0.0249 1.458 (0.482) 

  

  Source: Author’s calculation. 
 
 Next, the obtained results were used to verify a significance of the largest 
Lyapunov exponent. For Δ STUR process the null hypothesis 0)(:0 =λEH  
against the alternative 0)(:1 >λEH  was verified. Since the Jarque-Bera test 
did not reject the hypothesis of the normal distribution, to verify the signifi-

cance of exponents the statistic 1000
σ
λ

=Z  was used. The computed values 

of the Z-statistic for different m are presented in Table 3. The symbols * and ** 
indicate values leading to rejection of the null, for the significance levels equal, 
respectively, 0.05 and 0.01. It is seen that the obtained results indicate the sensi-
tivity to initial conditions. However, it should be marked that the estimated ex-
ponents, although positive, are very small indeed (see λ  in Table 2), therefore 
this identified sensitivity is quite weak.  
 Different, but expected, results were obtained for Δ RW process. In this 
case the calculated values of the Z-statistic did not lead to rejection of the null 
hypothesis7. 
 
Table 3. Values of the Z-statistic in the test of a significance of Lyapunov exponents  
 

 m=1 m=2 m=3 m=5 m=7 m=10 m=15 

Δ STUR 2.024* 2.832** 3.235** 2.401** 1.655* 1.794* 2.816** 
Δ RW -0.731 -0.327 0.593 0.952 -1.544 -0.182 -0.892 

 

Source: Author’s calculation. 
 

 The results of this research indicate that the estimation of the largest Lyapu-
nov exponent may be helpful in distinguishing STUR and random walk proc-
esses. 
 Additionally, similarly to R/S analysis, the Kolmogorov-Smirnov test was 
applied to verify the consistency of the distributions of the largest Lyapunov 
exponents for STUR and Δ Δ RW processes. The calculated values of KS-
statistic are presented in Table 4. 
                                                 

7 For  and  the alternative hypothesis H3=m 5=m 1: 0)( >λE  was considered 
whereas in other cases H1: 0)( <λE . 
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Table 4. Values  the KS-statistic in the test of the distributions’ consistency of the 
largest Lyapunov exponents 

of

 

 m=1 m=2 m=3 m=5 m=7 m=10 m=15 
KS 0 0.738 1.476* 1.163 1.431* 1.185 1.096 0.85

 

So rce: Au  calcul  
 

of the consistency of the distributions was rejected for 
 and  at the significance level 

u thor’s ation.

The null hypothesis 
7=m 15=m 05.0=α . This result confirms that 

the 
guishing STUR an when th

eferences 

d, E.H. (1976), The expected value of the adjusted rescaled Hurst range 
of independent normal summands, Biometrika, 63, 111–116. 
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